360 research outputs found

    Phase-aberration correction with a 3-D ultrasound scanner: feasibility study

    Full text link

    Navier-Stokes transport coefficients of dd-dimensional granular binary mixtures at low density

    Full text link
    The Navier-Stokes transport coefficients for binary mixtures of smooth inelastic hard disks or spheres under gravity are determined from the Boltzmann kinetic theory by application of the Chapman-Enskog method for states near the local homogeneous cooling state. It is shown that the Navier-Stokes transport coefficients are not affected by the presence of gravity. As in the elastic case, the transport coefficients of the mixture verify a set of coupled linear integral equations that are approximately solved by using the leading terms in a Sonine polynomial expansion. The results reported here extend previous calculations [V. Garz\'o and J. W. Dufty, Phys. Fluids {\bf 14}, 1476 (2002)] to an arbitrary number of dimensions. To check the accuracy of the Chapman-Enskog results, the inelastic Boltzmann equation is also numerically solved by means of the direct simulation Monte Carlo method to evaluate the diffusion and shear viscosity coefficients for hard disks. The comparison shows a good agreement over a wide range of values of the coefficients of restitution and the parameters of the mixture (masses and sizes).Comment: 6 figures, to be published in J. Stat. Phy

    Molecular dynamics simulations of vibrated granular gases

    Full text link
    We present molecular dynamics simulations of mono- or bidisperse inelastic granular gases driven by vibrating walls, in two dimensions (without gravity). Because of the energy injection at the boundaries, a situation often met experimentally, density and temperature fields display heterogeneous profiles in the direction perpendicular to the walls. A general equation of state for an arbitrary mixture of fluidized inelastic hard spheres is derived and successfully tested against numerical data. Single-particle velocity distribution functions with non-Gaussian features are also obtained, and the influence of various parameters (inelasticity coefficients, density...) analyzed. The validity of a recently proposed Random Restitution Coefficient model is assessed through the study of projected collisions onto the direction perpendicular to that of energy injection. For the binary mixture, the non-equipartition of translational kinetic energy is studied and compared both to experimental data and to the case of homogeneous energy injection (``stochastic thermostat''). The rescaled velocity distribution functions are found to be very similar for both species

    Diffusion of impurities in a granular gas

    Full text link
    Diffusion of impurities in a granular gas undergoing homogeneous cooling state is studied. The results are obtained by solving the Boltzmann--Lorentz equation by means of the Chapman--Enskog method. In the first order in the density gradient of impurities, the diffusion coefficient DD is determined as the solution of a linear integral equation which is approximately solved by making an expansion in Sonine polynomials. In this paper, we evaluate DD up to the second order in the Sonine expansion and get explicit expressions for DD in terms of the restitution coefficients for the impurity--gas and gas--gas collisions as well as the ratios of mass and particle sizes. To check the reliability of the Sonine polynomial solution, analytical results are compared with those obtained from numerical solutions of the Boltzmann equation by means of the direct simulation Monte Carlo (DSMC) method. In the simulations, the diffusion coefficient is measured via the mean square displacement of impurities. The comparison between theory and simulation shows in general an excellent agreement, except for the cases in which the gas particles are much heavier and/or much larger than impurities. In theses cases, the second Sonine approximation to DD improves significantly the qualitative predictions made from the first Sonine approximation. A discussion on the convergence of the Sonine polynomial expansion is also carried out.Comment: 9 figures. to appear in Phys. Rev.

    A motion-based approach to abdominal clutter reduction

    Get PDF
    In ultrasound images, clutter is a noise artifact most easily observed in anechoic or hypoechoic regions. It appears as diffuse echoes overlying anatomical structures of diagnostic importance, obscuring tissue borders and reducing image contrast. A novel clutter reduction method for abdominal images is proposed, wherein the abdominal wall is displaced during successive-frame image acquisitions. A region of clutter distal to the abdominal wall was observed to move with the abdominal wall, and finite impulse response (FIR) and blind source separation (BSS) motion filters were implemented to reduce this clutter. The proposed clutter reduction method was tested in simulated and phantom data and applied to fundamental and harmonic in vivo bladder and liver images from 2 volunteers. Results show clutter reductions ranging from 0 to 18 dB in FIR-filtered images and 9 to 27 dB in BSS-filtered images. The contrast-to-noise ratio was improved by 21 to 68% and 44 to 108% in FIR- and BSS-filtered images, respectively. Improvements in contrast ranged from 4 to 12 dB. The method shows promise for reducing clutter in other abdominal images

    Segregation by thermal diffusion of an intruder in a moderately dense granular fluid

    Full text link
    A solution of the inelastic Enskog equation that goes beyond the weak dissipation limit and applies for moderate densities is used to determine the thermal diffusion factor of an intruder immersed in a dense granular gas under gravity. This factor provides a segregation criterion that shows the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the parameters of the system (masses, sizes, density and coefficients of restitution). The form of the phase-diagrams for the BNE/RBNE transition depends sensitively on the value of gravity relative to the thermal gradient, so that it is possible to switch between both states for given values of the parameters of the system. Two specific limits are considered with detail: (i) absence of gravity, and (ii) homogeneous temperature. In the latter case, after some approximations, our results are consistent with previous theoretical results derived from the Enskog equation. Our results also indicate that the influence of dissipation on thermal diffusion is more important in the absence of gravity than in the opposite limit. The present analysis extends previous theoretical results derived in the dilute limit case [V. Garz\'o, Europhys. Lett. {\bf 75}, 521 (2006)] and is consistent with the findings of some recent experimental results.Comment: 10 figure

    Granular fluid thermostatted by a bath of elastic hard spheres

    Get PDF
    The homogeneous steady state of a fluid of inelastic hard spheres immersed in a bath of elastic hard spheres kept at equilibrium is analyzed by means of the first Sonine approximation to the (spatially homogeneous) Enskog--Boltzmann equation. The temperature of the granular fluid relative to the bath temperature and the kurtosis of the granular distribution function are obtained as functions of the coefficient of restitution, the mass ratio, and a dimensionless parameter β\beta measuring the cooling rate relative to the friction constant. Comparison with recent results obtained from an iterative numerical solution of the Enskog--Boltzmann equation [Biben et al., Physica A 310, 308 (202)] shows an excellent agreement. Several limiting cases are also considered. In particular, when the granular particles are much heavier than the bath particles (but have a comparable size and number density), it is shown that the bath acts as a white noise external driving. In the general case, the Sonine approximation predicts the lack of a steady state if the control parameter β\beta is larger than a certain critical value βc\beta_c that depends on the coefficient of restitution and the mass ratio. However, this phenomenon appears outside the expected domain of applicability of the approximation.Comment: 16 pages, 7 figures; minor changes; to be published in Phys. Rev.

    Spatial and temporal variation of fish assemblage associated with aquatic macrophyte patches in the littoral zone of the Ayapel Swamp Complex, Colombia

    Get PDF
    ABSTRACT: Aim: The purpose of the present study was to examine spatial and temporal variation in fish assemblage structure associated with aquatic macrophytes in the littoral zone of the ASC. Methods: Specimens were caught between January 2008 and February 2009, over four limnimetric moments, using both cast net and seine net. Data on the temperature, electrical conductivity, pH and dissolved oxygen was recorded for the characterization of the water mass in the sites. Results: A total of 34,151 specimens from 44 species were collected. The most abundant species were Eigenmannia virescens, Astyanax caucanus, Astyanax fasciatus, Roeboides dayi and Cyphocharax magdalenae, which together accounted for more than 75% of the sample. Temporal and spatial comparisons showed variation in the environmental conditions and highlighted the existence of heterogeneous abiotic conditions (p0.05) regarding the fish assemblage structure. The multivariate analysis showed no significant relationship between existing environmental conditions and the fish assemblage (p=0.04). The analysis also showed the absence of a relationship between the fish assemblage and environmental variables with respect to the flood pulse and sampling sites (p>0.05). Conclusion: The uniformity of the fish communities that inhabit aquatic macrophyte patches in the littoral region of the ASC may be related to the availability of suitable habitat in structural terms, that probably supports a more abundant and varied wildlife

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
    corecore